Tıpta Yenilikçi Yaklaşımlar Dergisi
Abbreviation: JIAM | ISSN (Online): 2757-7589 | DOI: 10.29329/jiam

Derleme Makalesi    |    Açık Erişim
Tıpta Yenilikçi Yaklaşımlar Dergisi 2020, Cil. 1(1) 63-72

Lösemide Wnt Sinyal Yolağı

Tuba Ozdemır Sancı & H. Meltem Özgüner

ss. 63 - 72   |  DOI: https://doi.org/10.29329/jiam.2020.299.6

Yayın tarihi: Ocak 05, 2021  |   Okunma Sayısı: 229  |  İndirilme Sayısı: 415


Özet

Wnt sinyal yolağının, embriyonik dönemde hematopoezi düzenlediği, hem miyeloid hem de lenfoid hematolojik malignitelerin gelişiminde çok önemli bir rol oynadığı bilinmektedir, ancak kesin rolü hala tartışmalıdır ve yoğun araştırma konusudur. Normal hematopoietik hücrelerin maturasyonu sırasında meydana gelen bozulmalar lösemik hücrelerin oluşmasına neden olur. Maturasyonunu tamamlamamış ve sınırsız bölünme özelliğine sahip lösemik hücrelerin kendilerini yenilemeleri ve çoğalmaları için değişen kemik iliği mikroçevresini ya da çeşitli sinyal yolaklarını kullandıkları bilinmektedir. Bu yolaklarda ortaya çıkabilecek anormallikler, malign transformasyon, azalmış apoptozis ve kontrolsüz proliferasyonla sonuçlanmaktadır. Hematolojik malignitelerde regülasyonu bozulan yolaklardan biri olan Wnt sinyal yolağı, lösemik hücrelerin kemik iliğine yerleşmesinin yanı sıra lösemik kök hücre gelişimi ve kemorezistansını destekler. Bu derlemede değişen Wnt sinyal yolağının kemik iliği mikroçevresini, ve lökomogenezi nasıl etkilediği özetlenerek Wnt sinyal yolağı hedeflenerek yapılan terapötik yaklaşımlar tartışılmıştır.

Anahtar Kelimeler: Hematopoez, Lösemi, Kemik Iliği Mikroçevresi, Wnt Sinyal Yolağı


Bu makaleye nasıl atıf yapılır

APA 6th edition
Sanci, T.O. & Ozguner, H.M. (2020). Lösemide Wnt Sinyal Yolağı . Tıpta Yenilikçi Yaklaşımlar Dergisi, 1(1), 63-72. doi: 10.29329/jiam.2020.299.6

Harvard
Sanci, T. and Ozguner, H. (2020). Lösemide Wnt Sinyal Yolağı . Tıpta Yenilikçi Yaklaşımlar Dergisi, 1(1), pp. 63-72.

Chicago 16th edition
Sanci, Tuba Ozdemir and H. Meltem Ozguner (2020). "Lösemide Wnt Sinyal Yolağı ". Tıpta Yenilikçi Yaklaşımlar Dergisi 1 (1):63-72. doi:10.29329/jiam.2020.299.6.

Kaynakça
  1. Ahmadzadeh, A., Norozi, F., Shahrabi, S., Shahjahani, M., & Saki, N. (2016). Wnt/β-catenin signaling in bone marrow niche. Cell and Tissue Research, 363(2), 321–335. https://doi.org/10.1007/s00441-015-2300-y [Google Scholar] [Crossref] 
  2. Altinok, B., & Asuman, S. (2016). WNT Sinyal Yolağı ve Kanser. Ankara Sağlık Hizmetleri Dergisi, 15(2), 27–38. [Google Scholar]
  3. Anastas, J. N., & Moon, R. T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nature Reviews Cancer, 13(1), 11–26. [Google Scholar]
  4. Babayeva, S., Zilber, Y., & Torban, E. (2011). Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes. American Journal of Physiology-Renal Physiology, 300(2), F549–F560. [Google Scholar]
  5. Baksh, D., & Tuan, R. S. (2007). Canonical and non-canonical wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells. Journal of Cellular Physiology, 212(3), 817–826. [Google Scholar]
  6. Bicocca, V. T., Chang, B. H., Masouleh, B. K., Muschen, M., Loriaux, M. M., Druker, B. J., & Tyner, J. W. (2012). Crosstalk between ROR1 and the Pre-B Cell Receptor Promotes Survival of t(1;19) Acute Lymphoblastic Leukemia. Cancer Cell, 22(5), 656–667. [Google Scholar]
  7. Clevers, H. (2006). Wnt/β-Catenin Signaling in Development and Disease. Cell, 127(3), 469–480. [Google Scholar]
  8. Clevers, H., & Nusse, R. (2012). Wnt/β-Catenin Signaling and Disease. Cell, 149(6), 1192–1205. [Google Scholar]
  9. Conidi, A., van den Berghe, V., & Huylebroeck, D. (2013). Aptamers and Their Potential to Selectively Target Aspects of EGF, Wnt/β-Catenin and TGFβ–Smad Family Signaling. International Journal of Molecular Sciences, 14(4), 6690–6719. [Google Scholar]
  10. Cui, B., Ghia, E. M., Chen, L., Rassenti, L. Z., DeBoever, C., Widhopf, G. F., Kipps, T. J. (2016). High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood, 128(25), 2931–2940. [Google Scholar]
  11. De Boer, J., Wang, H. J., & van Blitterswijk, C. (2004). Effects of Wnt Signaling on Proliferation and Differentiation of Human Mesenchymal Stem Cells. Tissue Engineering, 10(3–4), 393–401. [Google Scholar]
  12. Florian, M. C., Nattamai, K. J., Dörr, K., Marka, G., Überle, B., Vas, V., Geiger, H. (2013). A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature, 503(7476), 392–396. [Google Scholar]
  13. Grainger, S., Traver, D., & Willert, K. (2016). Wnt Signaling in Hematological Malignancies, 33(8), 839–841. [Google Scholar]
  14. Hatırnaz Ng, Ö., Fırtına, S., Can, İ., Karakaş, Z., Ağaoğlu, L., Doğru, Ö., Sayitoğlu, M. (2015). A possible role for WNT5A hypermethylation in Pediatric Acute Lymphoblastic Leukemia. Turkish Journal of Hematology, 32(2), 127–135. [Google Scholar]
  15. Iwasaki, H., & Suda, T. (2009). Cancer stem cells and their niche. Cancer Science, 100(7), 1166–1172. [Google Scholar]
  16. Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12(10), 1167–1174. [Google Scholar]
  17. Kohn, A. D., & Moon, R. T. (2005). Wnt and calcium signaling: β-Catenin-independent pathways. Cell Calcium, 38(3–4), 439–446. https://doi.org/10.1016/j.ceca.2005.06.022 [Google Scholar] [Crossref] 
  18. Konopleva, M. Y., & Jordan, C. T. (2011). Leukemia Stem Cells and Microenvironment: Biology and Therapeutic Targeting. Journal of Clinical Oncology, 29(5), 591–599. [Google Scholar]
  19. Li, G., Xu, J., & Li, Z. (2012). Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling. Biochemical and Biophysical Research Communications, 423(4), 684–689. [Google Scholar]
  20. Liang, H., Chen, Q., Coles, A. H., Anderson, S. J., Pihan, G., Bradley, A., Jones, S. N. (2003). Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell, 4(5), 349–360. [Google Scholar]
  21. Lien, W. H., & Fuchs, E. (2014). Wnt some lose some: Transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes and Development, 28(14), 1517–1532. [Google Scholar]
  22. Ling, L., Nurcombe, V., & Cool, S. M. (2009). Wnt signaling controls the fate of mesenchymal stem cells. Gene, 433(1–2), 1–7. [Google Scholar]
  23. Lu, D., Zhao, Y., Tawatao, R., Cottam, H. B., Sen, M., Leoni, L. M., … Carson, D. A. (2004). Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 101(9), 3118–3123. [Google Scholar]
  24. Malhotra, S., & Kincade, P. W. (2009). Wnt-Related Molecules and Signaling Pathway Equilibrium in Hematopoiesis. Cell Stem Cell, 4(1), 27–36. [Google Scholar]
  25. Martín, V., Valencia, A., Agirre, X., Cervera, J., Jose-Eneriz, E. S., Vilas-Zornoza, A., Román-Gómez, J. (2010). Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Science, 101(2), 425–432. [Google Scholar]
  26. McWhirter, J. R., Neuteboom, S. T. C., Wancewicz, E. V., Monia, B. P., Downing, J. R., & Murre, C. (1999). Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proceedings of the National Academy of Sciences, 96(20), 11464–11469. [Google Scholar]
  27. Nusse, R. (2005). Wnt signaling in disease and in development. Cell Research, 15(1), 28–32. [Google Scholar]
  28. Prunier, C., Hocevar, B. A., & Howe, P. H. (2004). Wnt Signaling: Physiology and Pathology. Growth Factors, 22(3), 141–150. [Google Scholar]
  29. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., & Nusse, R. (1987). The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 50(4), 649–657. [Google Scholar]
  30. Ruan, Y., Kim, H. N., Ogana, H., & Kim, Y.-M. (2020). Wnt Signaling in Leukemia and Its Bone Marrow Microenvironment. International Journal of Molecular Sciences, 21(17), 6247. [Google Scholar]
  31. Seke Etet, P. F., Vecchio, L., Bogne Kamga, P., Nchiwan Nukenine, E., Krampera, M., & Nwabo Kamdje, A. H. (2013). Normal hematopoiesis and hematologic malignancies: Role of canonical Wnt signaling pathway and stromal microenvironment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1835(1), 1–10. [Google Scholar]
  32. Shafat, M. S., Gnaneswaran, B., Bowles, K. M., & Rushworth, S. A. (2017). The bone marrow microenvironment – Home of the leukemic blasts. Blood Reviews, 31(5), 277–286. [Google Scholar]
  33. Soares‐Lima, S. C., Pombo‐de‐Oliveira, M. S., & Carneiro, F. R. G. (2020). The multiple ways Wnt signaling contributes to acute leukemia pathogenesis. Journal of Leukocyte Biology, 108(4), 1081–1099. [Google Scholar]
  34. Staal, F., Famili, F., Garcia Perez, L., & Pike-Overzet, K. (2016). Aberrant Wnt Signaling in Leukemia. Cancers, 8(9), 78. [Google Scholar]
  35. Valenta, T., Hausmann, G., & Basler, K. (2012). The many faces and functions of β-catenin. The EMBO Journal, 31(12), 2714–2736. [Google Scholar]
  36. Vermeulen, L., De Sousa E Melo, F., van der Heijden, M., Cameron, K., de Jong, J. H., Borovski, T., Medema, J. P. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12(5), 468–476. [Google Scholar]
  37. Wend, P., Holland, J. D., Ziebold, U., & Birchmeier, W. (2010). Wnt signaling in stem and cancer stem cells. Seminars in Cell & Developmental Biology, 21(8), 855–863. [Google Scholar]
  38. Wiese, K. E., Nusse, R., & van Amerongen, R. (2018). Wnt signalling: conquering complexity. Development, 145(12), dev165902. [Google Scholar]
  39. Ying, J., Li, H., Chen, Y.-W., Srivastava, G., Gao, Z., & Tao, Q. (2007). WNT5A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor. Blood, 110(12), 4130–4131. [Google Scholar]
  40. Yu, J., Chen, L., Cui, B., Wu, C., Choi, M. Y., Chen, Y., Kipps, T. J. (2017). Cirmtuzumab inhibits Wnt5a-induced Rac1 activation in chronic lymphocytic leukemia treated with ibrutinib. Leukemia, 31(6), 1333–1339. [Google Scholar]
  41. Yu, Jian, Chen, L., Cui, B., Widhopf, G. F., Shen, Z., Wu, R., Kipps, T. J. (2015). Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. Journal of Clinical Investigation, 126(2), 585–598.  [Google Scholar]