Tıpta Yenilikçi Yaklaşımlar Dergisi
Abbreviation: JIAM | ISSN (Online): 2757-7589 | DOI: 10.29329/jiam

Orjinal Araştırma Makalesi | Tıpta Yenilikçi Yaklaşımlar Dergisi 2020, Cil. 1(1) 1-10

Therapy Induced Senescence Promote Expression of Death Receptors in Breast Cancer Cells

Mehtap Kılıç Eren, Hatice Pilevneli, Ceylan Ak, Ayfer Karlıtepe & Nazlican Kaygusuz

ss. 1 - 10   |  DOI: https://doi.org/10.29329/jiam.2020.299.1

Yayın tarihi: Ocak 05, 2021  |   Okunma Sayısı: 39  |  İndirilme Sayısı: 107


Özet

Chemotherapeutic agents that cause DNA damage also induce cellular senescence known as therapy-induced senescence (TIS). Cells undergoing senescence may exert detrimental effects by promoting tumor progression in healthy cells or supporting metastases in cancer cells due to  “senesence-associated secretory phenotype” (SASP), involving secretion of chemokines, cytokines, metalloproteinases, and growth factors. Death receptors belong to the tumor necrosis factor receptor superfamily and implicated in induction of apoptosis via activation of extrinsic pathway. The most recognized death receptors are FAS (CD95), TNFR1 and TRAIL-R1 / 2 (DR4-DR5) etc. and capable of directly inducing apoptosis in the cell. In this study we aim to investigate the expression of cell death receptors in response to TIS of breast cancer cells for their potential use in elimination of senescent cells.

Doxorubicin and etoposide were used to induce senescence selectively in MCF7 breast cancer cell line. Senescence induction was confirmed by β-galactosidase staining and cell cycle analysis. Activations of p53, p21, and γ-H2AX and expression levels of cell death receptors (FAS (CD95), TNFR1-2 and DR5 were tested by western blot analysis. Apoptosis was measured by Annexin V/7AAD analysis.

Here, we show that chemotherapy agents etoposide and doxorubicin induced senescence by arresting MCF-12A and MCF-7 cells in G1 and G2/M phases of cell cycle., respectively. In addition, Induction of senescence is confirmed by SA-β-gal staining and by activation of g-H2AX, p53 and p21 proteins. Neither etoposide nor doxorubicin induced significant apoptosis in MCF12A or MCF-7 cells. Importantly, TIS increased the protein levels of TNFR1, TNFR2 and DR5 receptors selectively in MCF-7 cells but not in MCF-12A cells. These data suggest that chemotherapy agents induce senescence increased the expression of death receptors in breast cancer cell line MCF-7 thus provide a basis for further investigation of death receptor mediated targeting of senescent cells as potential therapeutic strategy.

Anahtar Kelimeler: Therapy Induced Senescence, Etoposide, Doxorubicin, TNFR1, DR5, Breast Cancer


Bu makaleye nasıl atıf yapılır?

APA 6th edition
Eren, M.K., Pilevneli, H., Ak, C., Karlitepe, A. & Kaygusuz, N. (2020). Therapy Induced Senescence Promote Expression of Death Receptors in Breast Cancer Cells . Tıpta Yenilikçi Yaklaşımlar Dergisi, 1(1), 1-10. doi: 10.29329/jiam.2020.299.1

Harvard
Eren, M., Pilevneli, H., Ak, C., Karlitepe, A. and Kaygusuz, N. (2020). Therapy Induced Senescence Promote Expression of Death Receptors in Breast Cancer Cells . Tıpta Yenilikçi Yaklaşımlar Dergisi, 1(1), pp. 1-10.

Chicago 16th edition
Eren, Mehtap Kilic, Hatice Pilevneli, Ceylan Ak, Ayfer Karlitepe and Nazlican Kaygusuz (2020). "Therapy Induced Senescence Promote Expression of Death Receptors in Breast Cancer Cells ". Tıpta Yenilikçi Yaklaşımlar Dergisi 1 (1):1-10. doi:10.29329/jiam.2020.299.1.

Kaynakça
  1. Coppé, J. P., Patil, C. K., Rodier, F., Sun, Y. U., Muñoz, D. P., Goldstein, J., ... & Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS biol, 6(12), e301. [Google Scholar]
  2. Debatin, K. M., & Krammer, P. H. (2004). Death receptors in chemotherapy and cancer. Oncogene, 23(16), 2950-2966. [Google Scholar]
  3. Dörr, J. R., Yu, Y., Milanovic, M., Beuster, G., Zasada, C., Däbritz, J. H. M., ... & Kratzat, S. (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature, 501(7467), 421-425. [Google Scholar]
  4. Elrod, H. A., & Sun, S. Y. (2008). Modulation of death receptors by cancer therapeutic agents. Cancer biology & therapy, 7(2), 163-173. [Google Scholar]
  5. Eren, M. K., Kilincli, A., & Eren, Ö. (2015). Resveratrol induced premature senescence is associated with DNA damage mediated SIRT1 and SIRT2 down-regulation. PLoS One, 10(4), e0124837. [Google Scholar]
  6. Ewald, J. A., Desotelle, J. A., Wilding, G., & Jarrard, D. F. (2010). Therapy-induced senescence in cancer. JNCI: Journal of the National Cancer Institute, 102(20), 1536-1546. [Google Scholar]
  7. Fridlyanskaya, I., Alekseenko, L., & Nikolsky, N. (2015). Senescence as a general cellular response to stress: a mini-review. Experimental gerontology, 72, 124-128. [Google Scholar]
  8. Hassan, M. S. U., Ansari, J., Spooner, D., & Hussain, S. A. (2010). Chemotherapy for breast cancer. Oncology reports, 24(5), 1121-1131. [Google Scholar]
  9. Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental cell research, 37(3), 614-636. [Google Scholar]
  10. Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in cell biology, 28(6), 436-453. [Google Scholar]
  11. Itahana, K., Campisi, J., & Dimri, G. P. (2007). Methods to detect biomarkers of cellular senescence. In Biological Aging (pp. 21-31). Humana Press. [Google Scholar]
  12. Lee, S., & Schmitt, C. A. (2019). The dynamic nature of senescence in cancer. Nature cell biology, 21(1), 94-101. [Google Scholar]
  13. Lopes-Paciencia, S., Saint-Germain, E., Rowell, M. C., Ruiz, A. F., Kalegari, P., & Ferbeyre, G. (2019). The senescence-associated secretory phenotype and its regulation. Cytokine, 117, 15-22. [Google Scholar]
  14. McDermott, M. S., Conlon, N., Browne, B. C., Szabo, A., Synnott, N. C., O’Brien, N. A., ... & O’Donovan, N. (2019). HER2-targeted tyrosine kinase inhibitors cause therapy-induced-senescence in breast cancer cells. Cancers, 11(2), 197. [Google Scholar]
  15. Nardella, C., Clohessy, J. G., Alimonti, A., & Pandolfi, P. P. (2011). Pro-senescence therapy for cancer treatment. Nature Reviews Cancer, 11(7), 503-511. [Google Scholar]
  16. Ohtani, N. (2019). Deciphering the mechanism for induction of senescence-associated secretory phenotype (SASP) and its role in ageing and cancer development. The Journal of Biochemistry, 166(4), 289-295. [Google Scholar]
  17. Schosserer, M., Grillari, J., & Breitenbach, M. (2017). The dual role of cellular senescence in developing tumors and their response to cancer therapy. Frontiers in oncology, 7, 278. [Google Scholar]
  18. Tonnessen-Murray, C. A., Frey, W. D., Rao, S. G., Shahbandi, A., Ungerleider, N. A., Olayiwola, J. O., ... & Jackson, J. G. (2019). Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. Journal of Cell Biology, 218(11), 3827-3844. [Google Scholar]
  19. Ukrainskaya, V. M., Stepanov, A. V., Glagoleva, I. S., Knorre, V. D., Belogurov, A. A., & Gabibov, A. G. (2017). Death receptors: new opportunities in cancer therapy. Acta Naturae (англоязычная версия), 9(3 (33)). [Google Scholar]
  20. Watanabe, S., Kawamoto, S., Ohtani, N., & Hara, E. (2017). Impact of senescence‐associated secretory phenotype and its potential as a therapeutic target for senescence‐associated diseases. Cancer science, 108(4), 563-569. [Google Scholar]
  21. Wyld, L., Bellantuono, I., Tchkonia, T., Morgan, J., Turner, O., Foss, F., ... & Kirkland, J. L. (2020). Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers, 12(8), 2134. [Google Scholar]