- Al-Asmari, A. K., Athar, M. T., Al-Shahrani, H. M., Al-Dakheel, S. I., & Al-Ghamdi, M. A. (2015). Efficacy of Lepidium sativum against carbon tetra chloride induced hepatotoxicity and determination of its bioactive compounds by GC-MS. Toxicology Reports, 2, 1319–1326. https://doi.org/10.1016/j.toxrep.2015.09.006 [Google Scholar] [Crossref]
- Bajt, M. L., Farhood, A., Lemasters, J. J., & Jaeschke, H. (2008). Mitochondrial Bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 324(1), 8–14. https://doi.org/10.1124/jpet.107.129445 [Google Scholar] [Crossref]
- Bechmann, L. P., Marquitan, G., Jochum, C., Saner, F., Gerken, G., & Canbay, A. (2008). Apoptosis versus necrosis rate as a predictor in acute liver failure following acetaminophen intoxication compared with acute-on-chronic liver failure. Liver International, 28(5), 713–716. https://doi.org/10.1111/j.1478-3231.2007.01566.x [Google Scholar] [Crossref]
- Brabec, V., & Kasparkova, J. (2005). Modifications of DNA by platinum complexes: Relation to resistance of tumors to platinum antitumor drugs. Drug Resistance Updates, 8(3), 131–146. https://doi.org/10.1016/j.drup.2005.04.006 [Google Scholar] [Crossref]
- Brautbar, N., & Williams, J. (2002). Industrial solvents and liver toxicity: Risk assessment, risk factors and mechanisms. International Journal of Hygiene and Environmental Health, Vol. 205, pp. 479–491. Int J Hyg Environ Health. https://doi.org/10.1078/1438-4639-00175 [Google Scholar] [Crossref]
- Buchweitz, J. P., Ganey, P. E., Bursian, S. J., & Roth, R. A. (2002). Underlying endotoxemia augments toxic responses to chlorpromazine: Is there a relationship to drug idiosyncrasy? Journal of Pharmacology and Experimental Therapeutics, 300(2), 460–467. https://doi.org/10.1124/jpet.300.2.460 [Google Scholar] [Crossref]
- Chakraborty, M., Fullerton, A. M., Semple, K., Chea, L. S., Proctor, W. R., Bourdi, M., … Pohl, L. R. (2015). Drug-induced allergic hepatitis develops in mice when myeloid-derived suppressor cells are depleted prior to halothane treatment. Hepatology, 62(2), 546–557. https://doi.org/10.1002/hep.27764 [Google Scholar] [Crossref]
- Chao, X., Wang, H., Jaeschke, H., & Ding, W. X. (2018, August 1). Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver International, Vol. 38, pp. 1363–1374. Liver Int. https://doi.org/10.1111/liv.13866 [Google Scholar] [Crossref]
- Davern, T., James, L., Hinson, J., Polson, J., Larson, A., Fontana, R., … Lee, W. (2006). Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology, 130(3), 687–694. https://doi.org/10.1053/J.GASTRO.2006.01.033 [Google Scholar] [Crossref]
- Deng, X., Luyendyk, J. P., Ganey, P. E., & Roth, R. A. (2009). Inflammatory stress and idiosyncratic hepatotoxicity: Hints from animal models. Pharmacological Reviews, 61(3), 262–282. https://doi.org/10.1124/pr.109.001727 [Google Scholar] [Crossref]
- Deng, X., Stachlewitz, R. F., Liguori, M. J., Blomme, E. A. G., Waring, J. F., Luyendyk, J. P., … Roth, R. A. (2006). Modest inflammation enhances diclofenac hepatotoxicity in rats: Role of neutrophils and bacterial translocation. Journal of Pharmacology and Experimental Therapeutics, 319(3), 1191–1199. https://doi.org/10.1124/jpet.106.110247 [Google Scholar] [Crossref]
- Dugan, C. M., MacDonald, A. E., Roth, R. A., & Ganey, P. E. (2010). A mouse model of severe halothane hepatitis based on human risk factors. Journal of Pharmacology and Experimental Therapeutics, 333(2), 364–372. https://doi.org/10.1124/jpet.109.164541 [Google Scholar] [Crossref]
- El-Beshbishy, H. A., Tork, O. M., El-Bab, M. F., & Autifi, M. A. (2011). Antioxidant and antiapoptotic effects of green tea polyphenols against azathioprine-induced liver injury in rats. Pathophysiology, 18(2), 125–135. https://doi.org/10.1016/j.pathophys.2010.08.002 [Google Scholar] [Crossref]
- Elisa Böhmer, A., Ribeiro Corrĉa, A. M., de Souza, D. G., Knorr, L., Hansel, G., Gustavo Corbellini, L., … Onofre Souza, D. (2011). Long-term cyclosporine treatment: Evaluation of serum biochemical parameters and histopathological alterations in Wistar rats. Experimental and Toxicologic Pathology, 63(1–2), 119–123. https://doi.org/10.1016/j.etp.2009.10.005 [Google Scholar] [Crossref]
- Etchevers, M. J., Aceituno, M., & Sans, M. (2008). Are we giving azathioprine too late? The case for early immunomodulation in inflammatory bowel disease. World Journal of Gastroenterology, 14(36), 5512–5518. https://doi.org/10.3748/wjg.14.5512 [Google Scholar] [Crossref]
- Foureau, D. M., Walling, T. L., Maddukuri, V., Anderson, W., Culbreath, K., Kleiner, D. E., … Bonkovsky, H. L. (2015). Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis. Clinical and Experimental Immunology, 180(1), 40–51. https://doi.org/10.1111/cei.12558 [Google Scholar] [Crossref]
- Fujimoto, K., Kumagai, K., Ito, K., Arakawa, S., Ando, Y., Oda, S. I., … Manabe, S. (2009). Sensitivity of liver injury in heterozygous sod2 knockout mice treated with troglitazone or acetaminophen. Toxicologic Pathology, 37(2), 193–200. https://doi.org/10.1177/0192623308329282 [Google Scholar] [Crossref]
- Gabrilovich, D. I., & Nagaraj, S. (2009, March). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, Vol. 9, pp. 162–174. Nat Rev Immunol. https://doi.org/10.1038/nri2506 [Google Scholar] [Crossref]
- Hajovsky, H., Hu, G., Koen, Y., Sarma, D., Cui, W., Moore, D. S., … Hanzlik, R. P. (2012). Metabolism and toxicity of thioacetamide and thioacetamide S-Oxide in rat hepatocytes. Chemical Research in Toxicology, 25(9), 1955–1963. https://doi.org/10.1021/tx3002719 [Google Scholar] [Crossref]
- Hamid, M., Liu, D., Abdulrahim, Y., Liu, Y., Qian, G., Khan, A., … Huang, K. (2017). Amelioration of CCl4-induced liver injury in rats by selenizing Astragalus polysaccharides: Role of proinflammatory cytokines, oxidative stress and hepatic stellate cells. Research in Veterinary Science, 114, 202–211. https://doi.org/10.1016/j.rvsc.2017.05.002 [Google Scholar] [Crossref]
- Hanawa, N., Shinohara, M., Saberi, B., Gaarde, W. A., Han, D., & Kaplowitz, N. (2008). Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. Journal of Biological Chemistry, 283(20), 13565–13577. https://doi.org/10.1074/jbc.M708916200 [Google Scholar] [Crossref]
- Henninger, C., Huelsenbeck, J., Huelsenbeck, S., Grösch, S., Schad, A., Lackner, K. J., … Fritz, G. (2012). The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity. Toxicology and Applied Pharmacology, 261(1), 66–73. https://doi.org/10.1016/j.taap.2012.03.012 [Google Scholar] [Crossref]
- Jaeschke, H., Xie, Y., & McGill, M. R. (2014). Acetaminophen-induced liver injury: From animal models to humans. Journal of Clinical and Translational Hepatology, Vol. 2, pp. 153–161. J Clin Transl Hepatol. https://doi.org/10.14218/JCTH.2014.00014 [Google Scholar] [Crossref]
- Kang, J. S., Wanibuchi, H., Morimura, K., Wongpoomchai, R., Chusiri, Y., Gonzalez, F. J., & Fukushima, S. (2008). Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicology and Applied Pharmacology, 228(3), 295–300. https://doi.org/10.1016/j.taap.2007.11.010 [Google Scholar] [Crossref]
- Kaplowitz, N. (2005). Idiosyncratic drug hepatotoxicity. Nature Reviews Drug Discovery 2005 4:6, 4(6), 489–499. https://doi.org/10.1038/nrd1750 [Google Scholar] [Crossref]
- Kepekçi, R. A., Polat, S., Çelik, A., Bayat, N., & Saygideger, S. D. (2013). Protective effect of Spirulina platensis enriched in phenolic compounds against hepatotoxicity induced by CCl4. Food Chemistry, 141(3), 1972–1979. https://doi.org/10.1016/j.foodchem.2013.04.107 [Google Scholar] [Crossref]
- Knockaert, L., Berson, A., Ribault, C., Prost, P. E., Fautrel, A., Pajaud, J., … Robin, M. A. (2012). Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver. Laboratory Investigation, 92(3), 396–410. https://doi.org/10.1038/labinvest.2011.193 [Google Scholar] [Crossref]
- Lee, W. M., & Seremba, E. (2008, April). Etiologies of acute liver failure. Current Opinion in Critical Care, Vol. 14, pp. 198–201. Curr Opin Crit Care. https://doi.org/10.1097/MCC.0b013e3282f6a420 [Google Scholar] [Crossref]
- Leite, S. B., Roosens, T., El Taghdouini, A., Mannaerts, I., Smout, A. J., Najimi, M., … van Grunsven, L. A. (2016). Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials, 78, 1–10. https://doi.org/10.1016/j.biomaterials.2015.11.026 [Google Scholar] [Crossref]
- Lu, J., Jones, A. D., Harkema, J. R., Roth, R. A., & Ganey, P. E. (2012). Amiodarone exposure during modest inflammation induces idiosyncrasy-like liver injury in rats: Role of tumor necrosis factor-alpha. Toxicological Sciences, 125(1), 126–133. https://doi.org/10.1093/toxsci/kfr266 [Google Scholar] [Crossref]
- Lucena, M. I., García-Martín, E., Andrade, R. J., Martínez, C., Stephens, C., Ruiz, J. D., … Agundez, J. A. G. (2010). Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology, 52(1), 303–312. https://doi.org/10.1002/hep.23668 [Google Scholar] [Crossref]
- Mak, A., & Uetrecht, J. (2015). The Role of CD8 T Cells in Amodiaquine-Induced Liver Injury in PD1–/– Mice Cotreated with Anti-CTLA-4. Chemical Research in Toxicology, 28(8), 1567–1573. https://doi.org/10.1021/ACS.CHEMRESTOX.5B00137 [Google Scholar] [Crossref]
- Mattila, P. S., Ullman, K. S., Fiering, S., Emmel, E. A., McCutcheon, M., Crabtree, G. R., & Herzenberg, L. A. (1990). The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. The EMBO Journal, 9(13), 4425. Retrieved from /pmc/articles/PMC552235/?report=abstract [Google Scholar]
- McGill, M. R., Du, K., Xie, Y., Bajt, M. L., Ding, W. X., Jaeschke, H., … Kaplowitz, N. (2015). The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury. Xenobiotica, 45(5), 442–449. https://doi.org/10.3109/00498254.2014.986250 [Google Scholar] [Crossref]
- McGill, M. R., Williams, C. D., Xie, Y., Ramachandran, A., & Jaeschke, H. (2012). Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicology and Applied Pharmacology, 264(3), 387–394. https://doi.org/10.1016/j.taap.2012.08.015 [Google Scholar] [Crossref]
- Mcgill, M., Yan, H. M., Ramachandran, A., Murray, G. J., Rollins, D. E., & Jaeschke, H. (2011). HepaRG cells: A human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology, 53(3), 974–982. https://doi.org/10.1002/hep.24132 [Google Scholar] [Crossref]
- Metushi, I. G., Cai, P., Dervovic, D., Liu, F., Lobach, A., Nakagawa, T., & Uetrecht, J. (2015). Development of a novel mouse model of amodiaquine-induced liver injury with a delayed onset. Journal of Immunotoxicology, 12(3), 247–260. https://doi.org/10.3109/1547691X.2014.934977 [Google Scholar] [Crossref]
- Metushi, I. G., Hayes, M. A., & Uetrecht, J. (2015). Treatment of PD-1-/- mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology, 61(4), 1332–1342. https://doi.org/10.1002/hep.27549 [Google Scholar] [Crossref]
- Naqshbandi, A., Khan, W., Rizwan, S., & Khan, F. (2012). Studies on the protective effect of flaxseed oil on cisplatin-induced hepatotoxicity. Human and Experimental Toxicology, 31(4), 364–375. https://doi.org/10.1177/0960327111432502 [Google Scholar] [Crossref]
- Nicoletti, P., Aithal, G. P., Bjornsson, E. S., Andrade, R. J., Sawle, A., Arrese, M., … Daly, A. K. (2017). Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study. Gastroenterology, 152(5), 1078–1089. https://doi.org/10.1053/j.gastro.2016.12.016 [Google Scholar] [Crossref]
- Nolan, J. P. (2010, November). The role of intestinal endotoxin in liver injury: A long and evolving history. Hepatology, Vol. 52, pp. 1829–1835. Hepatology. https://doi.org/10.1002/hep.23917 [Google Scholar] [Crossref]
- Norman, B. H. (2020). Drug Induced Liver Injury (DILI). Mechanisms and Medicinal Chemistry Avoidance/Mitigation Strategies. Journal of Medicinal Chemistry, 63(20), 11397–11419. https://doi.org/10.1021/acs.jmedchem.0c00524 [Google Scholar] [Crossref]
- Özyurt, B., Güleç, M., Özyurt, H., Ekici, F., Ati̧, Ö., & Akbaş, A. (2006). The effect of antioxidant caffeic acid phenethyl ester (CAPE) on some enzyme activities in cisplatin-induced neurotoxicity in rats. European Journal of General Medicine, 3(4), 167–172. https://doi.org/10.29333/EJGM/82401 [Google Scholar] [Crossref]
- Pardoll, D. M. (2012, April). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, Vol. 12, pp. 252–264. Nat Rev Cancer. https://doi.org/10.1038/nrc3239 [Google Scholar] [Crossref]
- Patocka, J., Nepovimova, E., Kuca, K., & Wu, W. (2020). Cyclosporine A: Chemistry and Toxicity – A Review. Current Medicinal Chemistry, 28(20), 3925–3934. https://doi.org/10.2174/0929867327666201006153202 [Google Scholar] [Crossref]
- Pessayre, D., Fromenty, B., Berson, A., Robin, M. A., Lettéron, P., Moreau, R., & Mansouri, A. (2012, February). Central role of mitochondria in drug-induced liver injury. Drug Metabolism Reviews, Vol. 44, pp. 34–87. Drug Metab Rev. https://doi.org/10.3109/03602532.2011.604086 [Google Scholar] [Crossref]
- Petit, E., Langouet, S., Akhdar, H., Nicolas-Nicolaz, C., Guillouzo, A., & Morel, F. (2008). Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes. Toxicology in Vitro, 22(3), 632–642. https://doi.org/10.1016/j.tiv.2007.12.004 [Google Scholar] [Crossref]
- Ramachandran, A., & Jaeschke, H. (2019). Acetaminophen Hepatotoxicity. Seminars in Liver Disease, 39(2), 221–234. https://doi.org/10.1055/s-0039-1679919 [Google Scholar] [Crossref]
- Ramachandran, A., & Jaeschke, H. (2020). A mitochondrial journey through acetaminophen hepatotoxicity. Food and Chemical Toxicology, 140. https://doi.org/10.1016/j.fct.2020.111282 [Google Scholar] [Crossref]
- Randle, L. E., Goldring, C. E. P., Benson, C. A., Metcalfe, P. N., Kitteringham, N. R., Park, B. K., & Williams, D. P. (2008). Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology, 243(3), 249–260. https://doi.org/10.1016/j.tox.2007.10.011 [Google Scholar] [Crossref]
- Roth, R. A., Harkema, J. R., Pestka, J. P., & Ganey, P. E. (1997). Is exposure to bacterial endotoxin a determinant of susceptibility to intoxication from xenobiotic agents? Toxicology and Applied Pharmacology, 147(2), 300–311. https://doi.org/10.1006/taap.1997.8301 [Google Scholar] [Crossref]
- Rubin, J. B., Hameed, B., Gottfried, M., Lee, W. M., & Sarkar, M. (2018). Acetaminophen-induced Acute Liver Failure Is More Common and More Severe in Women. Clinical Gastroenterology and Hepatology, 16(6), 936–946. https://doi.org/10.1016/j.cgh.2017.11.042 [Google Scholar] [Crossref]
- Shaw, P. J., Hopfensperger, M. J., Ganey, P. E., & Roth, R. A. (2007). Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha. Toxicological Sciences, 100(1), 259–266. https://doi.org/10.1093/toxsci/kfm218 [Google Scholar] [Crossref]
- Singh, H., Sidhu, S., Chopra, K., & Khan, M. U. (2017). The novel role of β-aescin in attenuating CCl4-induced hepatotoxicity in rats. Pharmaceutical Biology, 55(1), 749–757. https://doi.org/10.1080/13880209.2016.1275023 [Google Scholar] [Crossref]
- Thirumalai, T., David, E., Therasa, V., & Elumalai, E. K. (2011). Restorative effect of Eclipta alba in CCl 4 induced hepatotoxicity in male albino rats. Asian Pacific Journal of Tropical Disease, 1(4), 304–307. https://doi.org/10.1016/S2222-1808(11)60072-8 [Google Scholar] [Crossref]
- Thurman, R. G., Bradford, B. U., Iimuro, Y., Knecht, K. T., Arteel, G. E., Yin, M., … Mason, R. P. (1998). The role of gut-derived bacterial toxins and free radicals in alcohol- induced liver injury. Journal of Gastroenterology and Hepatology (Australia), 13(SUPPL.). https://doi.org/10.1111/jgh.1998.13.s1.39 [Google Scholar] [Crossref]
- Vergani, D., Mieli-Vergani, G., Alberti, A., Neuberger, J., Eddleston, A. L. W. F., Davis, M., & Williams, R. (1980). Antibodies to the Surface of Halothane-Altered Rabbit Hepatocytes in Patients with Severe Halothane-Associated Hepatitis. New England Journal of Medicine, 303(2), 66–71. https://doi.org/10.1056/nejm198007103030202 [Google Scholar] [Crossref]
- Walker, L. S. K., & Sansom, D. M. (2011, December). The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nature Reviews Immunology, Vol. 11, pp. 852–863. Nat Rev Immunol. https://doi.org/10.1038/nri3108 [Google Scholar] [Crossref]
- Waring, J. F., Liguori, M. J., Luyendyk, J. P., Maddox, J. F., Ganey, P. E., Stachlewitz, R. F., … Roth, R. A. (2006). Microarray analysis of lipopolysaccharide potentiation of trovafloxacin-induced liver injury in rats suggests a role for proinflammatory chemokines and neutrophils. Journal of Pharmacology and Experimental Therapeutics, 316(3), 1080–1087. https://doi.org/10.1124/jpet.105.096347 [Google Scholar] [Crossref]
- Weber, L. W. D., Boll, M., & Stampfl, A. (2003). Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Critical Reviews in Toxicology, Vol. 33, pp. 105–136. Crit Rev Toxicol. https://doi.org/10.1080/713611034 [Google Scholar] [Crossref]
- Wong, S. G. W., Card, J. W., & Racz, W. J. (2000). The role of mitochondrial injury in bromobenzene and furosemide induced hepatotoxicity. Toxicology Letters, 116(3), 171–181. https://doi.org/10.1016/S0378-4274(00)00218-6 [Google Scholar] [Crossref]
- Xie, Y., McGill, M. R., Dorko, K., Kumer, S. C., Schmitt, T. M., Forster, J., & Jaeschke, H. (2014). Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicology and Applied Pharmacology, 279(3), 266–274. https://doi.org/10.1016/j.taap.2014.05.010 [Google Scholar] [Crossref]
- Zaher, H., Buters, J. T. M., Ward, J. M., Bruno, M. K., Lucas, A. M., Stern, S. T., … Gonzalez, F. J. (1998). Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double- null mice. Toxicology and Applied Pharmacology, 152(1), 193–199. https://doi.org/10.1006/taap.1998.8501 [Google Scholar] [Crossref]
- Zhang, J., He, K., Cai, L., Chen, Y. C., Yang, Y., Shi, Q., … Tong, W. (2016). Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse. Chemico-Biological Interactions, 255, 45–54. https://doi.org/10.1016/J.CBI.2016.03.019 [Google Scholar] [Crossref]
|