Tıpta Yenilikçi Yaklaşımlar Dergisi
Abbreviation: JIAM | ISSN (Online): 2757-7589 | DOI: 10.29329/jiam

Derleme Makalesi    |    Açık Erişim
Tıpta Yenilikçi Yaklaşımlar Dergisi 2021, Cil. 2(2) 48-64

Deneysel Modellerde İlaca Bağlı Hepatotoksisite

Tuğba Çelik Samancı

ss. 48 - 64   |  DOI: https://doi.org/10.29329/jiam.2021.411.3

Yayın tarihi: Aralık 31, 2021  |   Okunma Sayısı: 35  |  İndirilme Sayısı: 349


Özet

İlaca bağlı karaciğer hasarı (DILI), genellikle çeşitli ilaçların veya diyet takviye ürünlerinin toksik dozlarına maruz kalındığında meydana gelen karaciğer hasarıdır. DILI, akut karaciğer yetmezliğinin en önemli nedenlerinden biri kabul edilmektedir. Günümüzde yeni ilaçların piyasaya sürülmesi ve diyet takviyelerindeki artış DILI yaygınlığını arttırmaktadır. DILI asetominofen, karbontetraklorür, çeşitli ilaçlar ve ksenobiyotikleri içeren bazı ilaçların toksik dozlarına maruz kalınmasıyla intrinsik DILI olarak ortaya çıkabildiği gibi, yaygın kullanılan ilaçların kullanımı sonrası öngörülemeyen şekilde de idiyosenkratik DILI olarak meydana gelebilmektedir. Özellikle idiyosenkratik DILI‘yi içeren mekanizma tam olarak aydınlatılamadığından DILI araştırmalarında deneysel modeller büyük önem arz etmektedir. Ayrıca DILI’nın başlangıcını, ilerlemesini ve geri döndürülebilirliğini yansıtan deneysel modellerin geliştirilmesi daha iyi ve daha güvenli ilaçların üretimine ve kullanımına büyük katkı sağlayacaktır. Yeni önlenebilir hücre kültürü model sistemlerinin üretimine rağmen, deneysel hayvan modelleri klinik öncesi araştırmaların kaçınılmaz bir parçasıdır. İntrinsik DILI hayvan modelleri teknik açıdan basitçe uygulanabilen modellerdir. İdiyosenkratik DILI doz bağımsız ve öngörülemeyen şekilde meydana geldiğinden mekanizması tam anlamıyla aydınlatılamamıştır. Bu nedenle idiyosenkratik DILI deneysel modellerinin uygulanmasında ön tedavi uygulamasına veya mutant model kullanımına ihtiyaç duyulabilmektedir. Bu araştırmada, çeşitli çalışmalarda deneysel modeller olarak kullanılmış ve kullanılmaya devam eden intrinsik ve idiyosenkratik deneysel DILI modelleri karşılaştırılarak avantaj ve dezavantajları ayrıntılı şekilde açıklanmıştır.

Anahtar Kelimeler: Hepatotoksisite, ilaç toksisitesi, intrinsik, idiyosenkratik


Bu makaleye nasıl atıf yapılır

APA 6th edition
Samanci, T.C. (2021). Deneysel Modellerde İlaca Bağlı Hepatotoksisite . Tıpta Yenilikçi Yaklaşımlar Dergisi, 2(2), 48-64. doi: 10.29329/jiam.2021.411.3

Harvard
Samanci, T. (2021). Deneysel Modellerde İlaca Bağlı Hepatotoksisite . Tıpta Yenilikçi Yaklaşımlar Dergisi, 2(2), pp. 48-64.

Chicago 16th edition
Samanci, Tugba Celik (2021). "Deneysel Modellerde İlaca Bağlı Hepatotoksisite ". Tıpta Yenilikçi Yaklaşımlar Dergisi 2 (2):48-64. doi:10.29329/jiam.2021.411.3.

Kaynakça
  1. Al-Asmari, A. K., Athar, M. T., Al-Shahrani, H. M., Al-Dakheel, S. I., & Al-Ghamdi, M. A. (2015). Efficacy of Lepidium sativum against carbon tetra chloride induced hepatotoxicity and determination of its bioactive compounds by GC-MS. Toxicology Reports, 2, 1319–1326. https://doi.org/10.1016/j.toxrep.2015.09.006 [Google Scholar] [Crossref] 
  2. Bajt, M. L., Farhood, A., Lemasters, J. J., & Jaeschke, H. (2008). Mitochondrial Bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. Journal of Pharmacology and Experimental Therapeutics, 324(1), 8–14. https://doi.org/10.1124/jpet.107.129445 [Google Scholar] [Crossref] 
  3. Bechmann, L. P., Marquitan, G., Jochum, C., Saner, F., Gerken, G., & Canbay, A. (2008). Apoptosis versus necrosis rate as a predictor in acute liver failure following acetaminophen intoxication compared with acute-on-chronic liver failure. Liver International, 28(5), 713–716. https://doi.org/10.1111/j.1478-3231.2007.01566.x [Google Scholar] [Crossref] 
  4. Brabec, V., & Kasparkova, J. (2005). Modifications of DNA by platinum complexes: Relation to resistance of tumors to platinum antitumor drugs. Drug Resistance Updates, 8(3), 131–146. https://doi.org/10.1016/j.drup.2005.04.006 [Google Scholar] [Crossref] 
  5. Brautbar, N., & Williams, J. (2002). Industrial solvents and liver toxicity: Risk assessment, risk factors and mechanisms. International Journal of Hygiene and Environmental Health, Vol. 205, pp. 479–491. Int J Hyg Environ Health. https://doi.org/10.1078/1438-4639-00175 [Google Scholar] [Crossref] 
  6. Buchweitz, J. P., Ganey, P. E., Bursian, S. J., & Roth, R. A. (2002). Underlying endotoxemia augments toxic responses to chlorpromazine: Is there a relationship to drug idiosyncrasy? Journal of Pharmacology and Experimental Therapeutics, 300(2), 460–467. https://doi.org/10.1124/jpet.300.2.460 [Google Scholar] [Crossref] 
  7. Chakraborty, M., Fullerton, A. M., Semple, K., Chea, L. S., Proctor, W. R., Bourdi, M., … Pohl, L. R. (2015). Drug-induced allergic hepatitis develops in mice when myeloid-derived suppressor cells are depleted prior to halothane treatment. Hepatology, 62(2), 546–557. https://doi.org/10.1002/hep.27764 [Google Scholar] [Crossref] 
  8. Chao, X., Wang, H., Jaeschke, H., & Ding, W. X. (2018, August 1). Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver International, Vol. 38, pp. 1363–1374. Liver Int. https://doi.org/10.1111/liv.13866 [Google Scholar] [Crossref] 
  9. Davern, T., James, L., Hinson, J., Polson, J., Larson, A., Fontana, R., … Lee, W. (2006). Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology, 130(3), 687–694. https://doi.org/10.1053/J.GASTRO.2006.01.033 [Google Scholar] [Crossref] 
  10. Deng, X., Luyendyk, J. P., Ganey, P. E., & Roth, R. A. (2009). Inflammatory stress and idiosyncratic hepatotoxicity: Hints from animal models. Pharmacological Reviews, 61(3), 262–282. https://doi.org/10.1124/pr.109.001727 [Google Scholar] [Crossref] 
  11. Deng, X., Stachlewitz, R. F., Liguori, M. J., Blomme, E. A. G., Waring, J. F., Luyendyk, J. P., … Roth, R. A. (2006). Modest inflammation enhances diclofenac hepatotoxicity in rats: Role of neutrophils and bacterial translocation. Journal of Pharmacology and Experimental Therapeutics, 319(3), 1191–1199. https://doi.org/10.1124/jpet.106.110247 [Google Scholar] [Crossref] 
  12. Dugan, C. M., MacDonald, A. E., Roth, R. A., & Ganey, P. E. (2010). A mouse model of severe halothane hepatitis based on human risk factors. Journal of Pharmacology and Experimental Therapeutics, 333(2), 364–372. https://doi.org/10.1124/jpet.109.164541 [Google Scholar] [Crossref] 
  13. El-Beshbishy, H. A., Tork, O. M., El-Bab, M. F., & Autifi, M. A. (2011). Antioxidant and antiapoptotic effects of green tea polyphenols against azathioprine-induced liver injury in rats. Pathophysiology, 18(2), 125–135. https://doi.org/10.1016/j.pathophys.2010.08.002 [Google Scholar] [Crossref] 
  14. Elisa Böhmer, A., Ribeiro Corrĉa, A. M., de Souza, D. G., Knorr, L., Hansel, G., Gustavo Corbellini, L., … Onofre Souza, D. (2011). Long-term cyclosporine treatment: Evaluation of serum biochemical parameters and histopathological alterations in Wistar rats. Experimental and Toxicologic Pathology, 63(1–2), 119–123. https://doi.org/10.1016/j.etp.2009.10.005 [Google Scholar] [Crossref] 
  15. Etchevers, M. J., Aceituno, M., & Sans, M. (2008). Are we giving azathioprine too late? The case for early immunomodulation in inflammatory bowel disease. World Journal of Gastroenterology, 14(36), 5512–5518. https://doi.org/10.3748/wjg.14.5512 [Google Scholar] [Crossref] 
  16. Foureau, D. M., Walling, T. L., Maddukuri, V., Anderson, W., Culbreath, K., Kleiner, D. E., … Bonkovsky, H. L. (2015). Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis. Clinical and Experimental Immunology, 180(1), 40–51. https://doi.org/10.1111/cei.12558 [Google Scholar] [Crossref] 
  17. Fujimoto, K., Kumagai, K., Ito, K., Arakawa, S., Ando, Y., Oda, S. I., … Manabe, S. (2009). Sensitivity of liver injury in heterozygous sod2 knockout mice treated with troglitazone or acetaminophen. Toxicologic Pathology, 37(2), 193–200. https://doi.org/10.1177/0192623308329282 [Google Scholar] [Crossref] 
  18. Gabrilovich, D. I., & Nagaraj, S. (2009, March). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, Vol. 9, pp. 162–174. Nat Rev Immunol. https://doi.org/10.1038/nri2506 [Google Scholar] [Crossref] 
  19. Hajovsky, H., Hu, G., Koen, Y., Sarma, D., Cui, W., Moore, D. S., … Hanzlik, R. P. (2012). Metabolism and toxicity of thioacetamide and thioacetamide S-Oxide in rat hepatocytes. Chemical Research in Toxicology, 25(9), 1955–1963. https://doi.org/10.1021/tx3002719 [Google Scholar] [Crossref] 
  20. Hamid, M., Liu, D., Abdulrahim, Y., Liu, Y., Qian, G., Khan, A., … Huang, K. (2017). Amelioration of CCl4-induced liver injury in rats by selenizing Astragalus polysaccharides: Role of proinflammatory cytokines, oxidative stress and hepatic stellate cells. Research in Veterinary Science, 114, 202–211. https://doi.org/10.1016/j.rvsc.2017.05.002 [Google Scholar] [Crossref] 
  21. Hanawa, N., Shinohara, M., Saberi, B., Gaarde, W. A., Han, D., & Kaplowitz, N. (2008). Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. Journal of Biological Chemistry, 283(20), 13565–13577. https://doi.org/10.1074/jbc.M708916200 [Google Scholar] [Crossref] 
  22. Henninger, C., Huelsenbeck, J., Huelsenbeck, S., Grösch, S., Schad, A., Lackner, K. J., … Fritz, G. (2012). The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity. Toxicology and Applied Pharmacology, 261(1), 66–73. https://doi.org/10.1016/j.taap.2012.03.012 [Google Scholar] [Crossref] 
  23. Jaeschke, H., Xie, Y., & McGill, M. R. (2014). Acetaminophen-induced liver injury: From animal models to humans. Journal of Clinical and Translational Hepatology, Vol. 2, pp. 153–161. J Clin Transl Hepatol. https://doi.org/10.14218/JCTH.2014.00014 [Google Scholar] [Crossref] 
  24. Kang, J. S., Wanibuchi, H., Morimura, K., Wongpoomchai, R., Chusiri, Y., Gonzalez, F. J., & Fukushima, S. (2008). Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity. Toxicology and Applied Pharmacology, 228(3), 295–300. https://doi.org/10.1016/j.taap.2007.11.010 [Google Scholar] [Crossref] 
  25. Kaplowitz, N. (2005). Idiosyncratic drug hepatotoxicity. Nature Reviews Drug Discovery 2005 4:6, 4(6), 489–499. https://doi.org/10.1038/nrd1750 [Google Scholar] [Crossref] 
  26. Kepekçi, R. A., Polat, S., Çelik, A., Bayat, N., & Saygideger, S. D. (2013). Protective effect of Spirulina platensis enriched in phenolic compounds against hepatotoxicity induced by CCl4. Food Chemistry, 141(3), 1972–1979. https://doi.org/10.1016/j.foodchem.2013.04.107 [Google Scholar] [Crossref] 
  27. Knockaert, L., Berson, A., Ribault, C., Prost, P. E., Fautrel, A., Pajaud, J., … Robin, M. A. (2012). Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver. Laboratory Investigation, 92(3), 396–410. https://doi.org/10.1038/labinvest.2011.193 [Google Scholar] [Crossref] 
  28. Lee, W. M., & Seremba, E. (2008, April). Etiologies of acute liver failure. Current Opinion in Critical Care, Vol. 14, pp. 198–201. Curr Opin Crit Care. https://doi.org/10.1097/MCC.0b013e3282f6a420 [Google Scholar] [Crossref] 
  29. Leite, S. B., Roosens, T., El Taghdouini, A., Mannaerts, I., Smout, A. J., Najimi, M., … van Grunsven, L. A. (2016). Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials, 78, 1–10. https://doi.org/10.1016/j.biomaterials.2015.11.026 [Google Scholar] [Crossref] 
  30. Lu, J., Jones, A. D., Harkema, J. R., Roth, R. A., & Ganey, P. E. (2012). Amiodarone exposure during modest inflammation induces idiosyncrasy-like liver injury in rats: Role of tumor necrosis factor-alpha. Toxicological Sciences, 125(1), 126–133. https://doi.org/10.1093/toxsci/kfr266 [Google Scholar] [Crossref] 
  31. Lucena, M. I., García-Martín, E., Andrade, R. J., Martínez, C., Stephens, C., Ruiz, J. D., … Agundez, J. A. G. (2010). Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology, 52(1), 303–312. https://doi.org/10.1002/hep.23668 [Google Scholar] [Crossref] 
  32. Mak, A., & Uetrecht, J. (2015). The Role of CD8 T Cells in Amodiaquine-Induced Liver Injury in PD1–/– Mice Cotreated with Anti-CTLA-4. Chemical Research in Toxicology, 28(8), 1567–1573. https://doi.org/10.1021/ACS.CHEMRESTOX.5B00137 [Google Scholar] [Crossref] 
  33. Mattila, P. S., Ullman, K. S., Fiering, S., Emmel, E. A., McCutcheon, M., Crabtree, G. R., & Herzenberg, L. A. (1990). The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. The EMBO Journal, 9(13), 4425. Retrieved from /pmc/articles/PMC552235/?report=abstract [Google Scholar]
  34. McGill, M. R., Du, K., Xie, Y., Bajt, M. L., Ding, W. X., Jaeschke, H., … Kaplowitz, N. (2015). The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury. Xenobiotica, 45(5), 442–449. https://doi.org/10.3109/00498254.2014.986250 [Google Scholar] [Crossref] 
  35. McGill, M. R., Williams, C. D., Xie, Y., Ramachandran, A., & Jaeschke, H. (2012). Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicology and Applied Pharmacology, 264(3), 387–394. https://doi.org/10.1016/j.taap.2012.08.015 [Google Scholar] [Crossref] 
  36. Mcgill, M., Yan, H. M., Ramachandran, A., Murray, G. J., Rollins, D. E., & Jaeschke, H. (2011). HepaRG cells: A human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology, 53(3), 974–982. https://doi.org/10.1002/hep.24132 [Google Scholar] [Crossref] 
  37. Metushi, I. G., Cai, P., Dervovic, D., Liu, F., Lobach, A., Nakagawa, T., & Uetrecht, J. (2015). Development of a novel mouse model of amodiaquine-induced liver injury with a delayed onset. Journal of Immunotoxicology, 12(3), 247–260. https://doi.org/10.3109/1547691X.2014.934977 [Google Scholar] [Crossref] 
  38. Metushi, I. G., Hayes, M. A., & Uetrecht, J. (2015). Treatment of PD-1-/- mice with amodiaquine and anti-CTLA4 leads to liver injury similar to idiosyncratic liver injury in patients. Hepatology, 61(4), 1332–1342. https://doi.org/10.1002/hep.27549 [Google Scholar] [Crossref] 
  39. Naqshbandi, A., Khan, W., Rizwan, S., & Khan, F. (2012). Studies on the protective effect of flaxseed oil on cisplatin-induced hepatotoxicity. Human and Experimental Toxicology, 31(4), 364–375. https://doi.org/10.1177/0960327111432502 [Google Scholar] [Crossref] 
  40. Nicoletti, P., Aithal, G. P., Bjornsson, E. S., Andrade, R. J., Sawle, A., Arrese, M., … Daly, A. K. (2017). Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study. Gastroenterology, 152(5), 1078–1089. https://doi.org/10.1053/j.gastro.2016.12.016 [Google Scholar] [Crossref] 
  41. Nolan, J. P. (2010, November). The role of intestinal endotoxin in liver injury: A long and evolving history. Hepatology, Vol. 52, pp. 1829–1835. Hepatology. https://doi.org/10.1002/hep.23917 [Google Scholar] [Crossref] 
  42. Norman, B. H. (2020). Drug Induced Liver Injury (DILI). Mechanisms and Medicinal Chemistry Avoidance/Mitigation Strategies. Journal of Medicinal Chemistry, 63(20), 11397–11419. https://doi.org/10.1021/acs.jmedchem.0c00524 [Google Scholar] [Crossref] 
  43. Özyurt, B., Güleç, M., Özyurt, H., Ekici, F., Ati̧, Ö., & Akbaş, A. (2006). The effect of antioxidant caffeic acid phenethyl ester (CAPE) on some enzyme activities in cisplatin-induced neurotoxicity in rats. European Journal of General Medicine, 3(4), 167–172. https://doi.org/10.29333/EJGM/82401 [Google Scholar] [Crossref] 
  44. Pardoll, D. M. (2012, April). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, Vol. 12, pp. 252–264. Nat Rev Cancer. https://doi.org/10.1038/nrc3239 [Google Scholar] [Crossref] 
  45. Patocka, J., Nepovimova, E., Kuca, K., & Wu, W. (2020). Cyclosporine A: Chemistry and Toxicity – A Review. Current Medicinal Chemistry, 28(20), 3925–3934. https://doi.org/10.2174/0929867327666201006153202 [Google Scholar] [Crossref] 
  46. Pessayre, D., Fromenty, B., Berson, A., Robin, M. A., Lettéron, P., Moreau, R., & Mansouri, A. (2012, February). Central role of mitochondria in drug-induced liver injury. Drug Metabolism Reviews, Vol. 44, pp. 34–87. Drug Metab Rev. https://doi.org/10.3109/03602532.2011.604086 [Google Scholar] [Crossref] 
  47. Petit, E., Langouet, S., Akhdar, H., Nicolas-Nicolaz, C., Guillouzo, A., & Morel, F. (2008). Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes. Toxicology in Vitro, 22(3), 632–642. https://doi.org/10.1016/j.tiv.2007.12.004 [Google Scholar] [Crossref] 
  48. Ramachandran, A., & Jaeschke, H. (2019). Acetaminophen Hepatotoxicity. Seminars in Liver Disease, 39(2), 221–234. https://doi.org/10.1055/s-0039-1679919 [Google Scholar] [Crossref] 
  49. Ramachandran, A., & Jaeschke, H. (2020). A mitochondrial journey through acetaminophen hepatotoxicity. Food and Chemical Toxicology, 140. https://doi.org/10.1016/j.fct.2020.111282 [Google Scholar] [Crossref] 
  50. Randle, L. E., Goldring, C. E. P., Benson, C. A., Metcalfe, P. N., Kitteringham, N. R., Park, B. K., & Williams, D. P. (2008). Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology, 243(3), 249–260. https://doi.org/10.1016/j.tox.2007.10.011 [Google Scholar] [Crossref] 
  51. Roth, R. A., Harkema, J. R., Pestka, J. P., & Ganey, P. E. (1997). Is exposure to bacterial endotoxin a determinant of susceptibility to intoxication from xenobiotic agents? Toxicology and Applied Pharmacology, 147(2), 300–311. https://doi.org/10.1006/taap.1997.8301 [Google Scholar] [Crossref] 
  52. Rubin, J. B., Hameed, B., Gottfried, M., Lee, W. M., & Sarkar, M. (2018). Acetaminophen-induced Acute Liver Failure Is More Common and More Severe in Women. Clinical Gastroenterology and Hepatology, 16(6), 936–946. https://doi.org/10.1016/j.cgh.2017.11.042 [Google Scholar] [Crossref] 
  53. Shaw, P. J., Hopfensperger, M. J., Ganey, P. E., & Roth, R. A. (2007). Lipopolysaccharide and trovafloxacin coexposure in mice causes idiosyncrasy-like liver injury dependent on tumor necrosis factor-alpha. Toxicological Sciences, 100(1), 259–266. https://doi.org/10.1093/toxsci/kfm218 [Google Scholar] [Crossref] 
  54. Singh, H., Sidhu, S., Chopra, K., & Khan, M. U. (2017). The novel role of β-aescin in attenuating CCl4-induced hepatotoxicity in rats. Pharmaceutical Biology, 55(1), 749–757. https://doi.org/10.1080/13880209.2016.1275023 [Google Scholar] [Crossref] 
  55. Thirumalai, T., David, E., Therasa, V., & Elumalai, E. K. (2011). Restorative effect of Eclipta alba in CCl 4 induced hepatotoxicity in male albino rats. Asian Pacific Journal of Tropical Disease, 1(4), 304–307. https://doi.org/10.1016/S2222-1808(11)60072-8 [Google Scholar] [Crossref] 
  56. Thurman, R. G., Bradford, B. U., Iimuro, Y., Knecht, K. T., Arteel, G. E., Yin, M., … Mason, R. P. (1998). The role of gut-derived bacterial toxins and free radicals in alcohol- induced liver injury. Journal of Gastroenterology and Hepatology (Australia), 13(SUPPL.). https://doi.org/10.1111/jgh.1998.13.s1.39 [Google Scholar] [Crossref] 
  57. Vergani, D., Mieli-Vergani, G., Alberti, A., Neuberger, J., Eddleston, A. L. W. F., Davis, M., & Williams, R. (1980). Antibodies to the Surface of Halothane-Altered Rabbit Hepatocytes in Patients with Severe Halothane-Associated Hepatitis. New England Journal of Medicine, 303(2), 66–71. https://doi.org/10.1056/nejm198007103030202 [Google Scholar] [Crossref] 
  58. Walker, L. S. K., & Sansom, D. M. (2011, December). The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nature Reviews Immunology, Vol. 11, pp. 852–863. Nat Rev Immunol. https://doi.org/10.1038/nri3108 [Google Scholar] [Crossref] 
  59. Waring, J. F., Liguori, M. J., Luyendyk, J. P., Maddox, J. F., Ganey, P. E., Stachlewitz, R. F., … Roth, R. A. (2006). Microarray analysis of lipopolysaccharide potentiation of trovafloxacin-induced liver injury in rats suggests a role for proinflammatory chemokines and neutrophils. Journal of Pharmacology and Experimental Therapeutics, 316(3), 1080–1087. https://doi.org/10.1124/jpet.105.096347 [Google Scholar] [Crossref] 
  60. Weber, L. W. D., Boll, M., & Stampfl, A. (2003). Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Critical Reviews in Toxicology, Vol. 33, pp. 105–136. Crit Rev Toxicol. https://doi.org/10.1080/713611034 [Google Scholar] [Crossref] 
  61. Wong, S. G. W., Card, J. W., & Racz, W. J. (2000). The role of mitochondrial injury in bromobenzene and furosemide induced hepatotoxicity. Toxicology Letters, 116(3), 171–181. https://doi.org/10.1016/S0378-4274(00)00218-6 [Google Scholar] [Crossref] 
  62. Xie, Y., McGill, M. R., Dorko, K., Kumer, S. C., Schmitt, T. M., Forster, J., & Jaeschke, H. (2014). Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicology and Applied Pharmacology, 279(3), 266–274. https://doi.org/10.1016/j.taap.2014.05.010 [Google Scholar] [Crossref] 
  63. Zaher, H., Buters, J. T. M., Ward, J. M., Bruno, M. K., Lucas, A. M., Stern, S. T., … Gonzalez, F. J. (1998). Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double- null mice. Toxicology and Applied Pharmacology, 152(1), 193–199. https://doi.org/10.1006/taap.1998.8501 [Google Scholar] [Crossref] 
  64. Zhang, J., He, K., Cai, L., Chen, Y. C., Yang, Y., Shi, Q., … Tong, W. (2016). Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse. Chemico-Biological Interactions, 255, 45–54. https://doi.org/10.1016/J.CBI.2016.03.019 [Google Scholar] [Crossref]