Tıpta Yenilikçi Yaklaşımlar Dergisi
Abbreviation: JIAM | ISSN (Online): 2757-7589 | DOI: 10.29329/jiam

Derleme Makalesi    |    Açık Erişim
Tıpta Yenilikçi Yaklaşımlar Dergisi 2021, Cil. 2(2) 65-76

Mezenkimal Kök Hücreler ve Endotel Hücreler Üzerindeki Etkileri

Yasemin Tin Arslan

ss. 65 - 76   |  DOI: https://doi.org/10.29329/jiam.2021.411.4

Yayın tarihi: Aralık 31, 2021  |   Okunma Sayısı: 213  |  İndirilme Sayısı: 326


Özet

Vücudumuz kas, kalp ve yağ gibi 200’ü aşkın hücreden meydana gelmiştir. Bütün bu hücrelerin temel kaynağını kök hücreler oluşturmaktadır. Kök hücreleri iki temel özellikleri göz önünde bulundurmak suretiyle sınıflandırmak mümkündür. Bunlardan ilki farklılaşma özelliklerine göre diğeri ise köken aldıkları temel doku esas alınarak yapılan sınıflandırmadır. Farklılaşma kapasitelerine göre ise totipotent, pluripotent, multipotent ve unipotent olmak üzere 4 kısımda incelenir. Köken aldıkları dokuya ise göre embriyonik ve erişkin kök hücreler olmak üzere iki gruba ayrılır. Erişkin kök hücre sınıfında yer alan mezenkimal kök hücreler, hasar almış olan dokularda tamiri gerçekleştirmektedirler. Yaraların onarımı ve tedavi aşamasında önemli roller üstlenirler. Bu süreçte, salgıladıkları faktörler ile bağışıklık ve endotelyal hücrelerin çoğalması ve migrasyonuna katkıda bulunurlar. Bu çalışmada mezenkimal kök hücrelerin genel uygulamalarının yanı sıra sahip olduğu rejeneratif ve reparatif etkileri ile bunların gerçekleşme mekanizmalarının özetlenmesi amaçlanmıştır.

Anahtar Kelimeler: Mezenkimal kök hücre, endotel, rejeneratif, reperatif


Bu makaleye nasıl atıf yapılır

APA 6th edition
Arslan, Y.T. (2021). Mezenkimal Kök Hücreler ve Endotel Hücreler Üzerindeki Etkileri . Tıpta Yenilikçi Yaklaşımlar Dergisi, 2(2), 65-76. doi: 10.29329/jiam.2021.411.4

Harvard
Arslan, Y. (2021). Mezenkimal Kök Hücreler ve Endotel Hücreler Üzerindeki Etkileri . Tıpta Yenilikçi Yaklaşımlar Dergisi, 2(2), pp. 65-76.

Chicago 16th edition
Arslan, Yasemin Tin (2021). "Mezenkimal Kök Hücreler ve Endotel Hücreler Üzerindeki Etkileri ". Tıpta Yenilikçi Yaklaşımlar Dergisi 2 (2):65-76. doi:10.29329/jiam.2021.411.4.

Kaynakça
  1. Alexander M, Hu R, Runtsch MC, et al. (2015). Exosome-delivered microRNAs modulate the response to endotoxin. Nature communications, 2015, 6:7321. [Google Scholar]
  2. Avniel S, Arik Z, Maly A, et al. (2006). Involvement of the CXCL12/CXCR4 pathway in the recovery of  skin following burns. The Journal of investigative dermatology, 126:468– 476. [Google Scholar]
  3. Bartholomew A, Sturgeon C, Siatskas M, et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental hematology, 30:42–48.        [Google Scholar]
  4. Bishop, A.E., Buttery, L.D., & Polak J.M. (2002). Embryonic stem cells. J Pathol, 197:424-9 [Google Scholar]
  5. Boomsma RA, Geenen DL.(2012). Mesenchymal Stem Cells Secrete Multiple Cytokines That Promote. Angiogenesis and Have Contrasting Effects on Chemotaxis and Apoptosis, PloS one, 7:e35685. [Google Scholar]
  6. Can A. (2014). Kök hücrelerin genel özellikleri, embriyonik ve yetişkin kök hücrelere genel bakış. Hematolog, 4:238‐254. [Google Scholar]
  7. Chen L, Tredget EE, Wu PY, Wu Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing, PloS one, 3:e1886. [Google Scholar]
  8. Cheung TH, Rando TA. (2013). Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol, 14:329-40. [Google Scholar]
  9. DelaRosa O, Lombardo E, Beraza A, et al. (2009). Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-  [Google Scholar]
  10. derived stem cells, Tissue engineering Part A, 15:2795–2806. [Google Scholar]
  11. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, ProckopDj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. (2006).  The international society for cellular therapy position statement, Cytotherapy, 8(4):315-7. [Google Scholar]
  12. Fariha MM, Mohd-Manzor N, Chua KH, Tan GK, Lim YH, Abdul-Rahman Hayati. (2013). Pro-Angiogenic Potential of Human Chorion-Derived Stem Cells: In Vitro and in Vivo Evaluation. Journal of Cellular and Molecular Medicine, 17(5):681–92. [Google Scholar]
  13. Gepstein L. (2002). Derivation and potential applications of human embryonic stem cells, Circ Res, 91:866-76. [Google Scholar]
  14. Herzog EL, Chai L, Krause DS. (2003). Plasticity of marrow-derived stem cells, Blood, 102:3483-3493. [Google Scholar]
  15. Hu L, Hu J, Zhao J, Liu J, Ouyang W, Yang C, et al. (2013). Side-by-side comparison of the biological characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells. Biomed Res Int, 438243. [Google Scholar]
  16. Kapur SK, Katz AJ. (2013). Review of the adipose derived stem cell secretome, Biochimie, 95:2222–2228 [Google Scholar]
  17. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24:1294-301. 16. [Google Scholar]
  18. Kinnaird T, Stabile E, Burnett MS, et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms, Circulation research, 94:678–685. [Google Scholar]
  19. Kim WS, Park BS, Sung JH. (2009). Protective Role of Adipose-Derived Stem Cells and Their Soluble Factors in Photoaging. Archives of Dermatological Research, (5):329– 36. [Google Scholar]
  20. Kirschstein RL. (2001). Stem cells: scientific progress and future research directions. National Institutes of Health: Washington, Department of Health and Human Services. [Google Scholar]
  21. Li, Qiankun et al. (2016).Regenerative and Reparative Effects of Human Chorion-Derived Stem Cell Conditioned Medium on Photo-Aged Epidermal Cells, Cell Cycle,15(8):1144– 55. [Google Scholar]
  22. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials, Haematologica, 91, 1017-1026. [Google Scholar]
  23. Meirelles LS, Nardi NB. (2009). Methodology, biology and clinical applications of mesenchymal stem cell, Frontiers in Bioscience, 14, 4281-4298. [Google Scholar]
  24. Odorico JS, Kaufman DS, Thomson JA. (2001).  Multilineage differentiation from human embryonic stem cell lines, Stem Cells, 19: 193-204. [Google Scholar]
  25. Özel H, Enver Ö, Dabak Ö. (2008). Embriyonik kök hücreler.Türkiye Klinikleri, J Med Sci, 28. [Google Scholar]
  26. Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV. (2007). Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells, 25:1761-8. [Google Scholar]
  27. Rasmusson I, Ringden O, Sundberg B, Le Blanc K. (2005). Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms, Experimental cell research, 305:33–41. [Google Scholar]
  28. Ren G, Su J, Zhang L, et al. (2009).  Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression, Stem cells (Dayton, Ohio), 27:1954–1962. [Google Scholar]
  29. Santoro A, Vlachou T, Carminati M, Pelicci PG, Mapelli M. (2016). Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep.17:1700-1720 [Google Scholar]
  30. Shi Y, Hu G, Su J, et al. (2010).  Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell research, 20:510–518. [Google Scholar]
  31. Smith AN, Willis E, Chan VT, et al. (2010). Mesenchymal stem cells induce dermal fibroblast responses to injury, Experimental cell research, 316:48–54. [Google Scholar]
  32. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine 86 production: role of indoleamine 2,3-dioxygenase and prostaglandin E2, Blood, 2008; 111:1327–1333 [Google Scholar]
  33. Strong AL, Bowles AC, MacCrimmon CP, et al. (2015). Adipose stromal cells repair pressure ulcers in both young and elderly mice: potential role of adipogenesis in skin repair, Stem cells translational medicine, 4:632–642. [Google Scholar]
  34. Şahin F, Saydam G, Omay SB. (2005). Kök hücre plastisitesi ve klinik pratikte kök hücre tedavisi. Türk Hematoloji Onkoloji Dergisi, 1: 48-56. [Google Scholar]
  35. Thomson JA, Itskovitz EJ, Sharipo SS, Vaknitz MA, Swiergiel JJ, Marshall VS, Jones JM. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282 (5391):1145-7. [Google Scholar]
  36. Toksoy A, Muller V, Gillitzer R, Goebeler M. (2007). Biphasic expression of stromal cell-derived factor-1 during human wound healing. The British journal of dermatology, 157:1148– 1154. [Google Scholar]
  37. Ulloa-Montoya F, Verfaillie CM, Hu WS. (2005). Culture systems for pluripotent stem cells. J Biosci Bioeng, 100:12-27. [Google Scholar]
  38. Ural AU. (2016). Kök Hücreler. TOTBİD (Türk Ortopedi ve Travmatoloji Birliği) Dergisi, 5, 3-4. [Google Scholar]
  39. Yoo KH, Jang IK, Lee MW, et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues, Cellular immunology, 259:150–156. [Google Scholar]
  40. Yoon BS, Moon JH, Jun EK, et al. (2010). Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells, Stem cells and development, 19:887– 902. [Google Scholar]