- Abdel-Ghany, S., & Sabit, H. (2020). MicroRNA-Based Vaccination and Treatment for COVID-19. Current Trends in Vaccines and Vaccinology, 3(1), 1-2. doi:10.31021/ctvv.20203109 [Google Scholar] [Crossref]
- Abolghasemi, M., Tehrani, S. S., Yousefi, T., Karimian, A., Mahmoodpoor, A., Ghamari, A., Jadidi-Niaragh, F., Yousefi, M., Kafil, H. S., Bastami, M., Edalati, M., Eyvazi, S., Naghizadeh, M., Targhazeh, N., Yousefi, B., Safa, A., Majidinia, M., & Rameshknia, V. (2020). MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. Journal of cellular physiology, 235(6), 5008–5029. https://doi.org/10.1002/jcp.29396 [Google Scholar] [Crossref]
- Barbu, M. G., Condrat, C. E., Thompson, D. C., Bugnar, O. L., Cretoiu, D., Toader, O. D., Suciu, N., & Voinea, S. C. (2020). MicroRNA Involvement in Signaling Pathways During Viral Infection. Frontiers in cell and developmental biology, 8, 143. https://doi.org/10.3389/fcell.2020.00143 [Google Scholar] [Crossref]
- Blahna, M. T., & Hata, A. (2013). Regulation of miRNA biogenesis as an integrated component of growth factor signaling. Current opinion in cell biology, 25(2), 233–240. https://doi.org/10.1016/j.ceb.2012.12.005 [Google Scholar] [Crossref]
- Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W., & Pasquinelli, A. E. (2016). Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Molecular cell, 64(2), 320–333. https://doi.org/10.1016/j.molcel.2016.09.004 [Google Scholar] [Crossref]
- Chen J. (2015). MicroRNAs, signaling pathways and diseases. Annals of translational medicine, 3(21), 329. https://doi.org/10.3978/j.issn.2305-5839.2015.12.16 [Google Scholar] [Crossref]
- Chen, J., & Zhao, K. N. (2015). HPV-p53-miR-34a axis in HPV-associated cancers. Annals of translational medicine, 3(21), 331. https://doi.org/10.3978/j.issn.2305-5839.2015.09.39 [Google Scholar] [Crossref]
- Colpaert, R., & Calore, M. (2019). MicroRNAs in Cardiac Diseases. Cells, 8(7), 737. https://doi.org/10.3390/cells8070737 [Google Scholar] [Crossref]
- Cruz-Rodrıguez, L., Dilsiz, N., Zıaratı, P., Lambert, B. D. , & Hochwımmer, B., (2020). A miRNA-peptıde fusıon as a vaccıne candıdate agaınst the novel coronavırus (covıd-19). Exosomes as potentıal bıomarkers of sars-cov-2 ın lung: after and before vaccınatıon LCR2020B008-13. Journal of Bioscience & Biomedical Engineering , vol.1, 1-11. [Google Scholar]
- Deswal, R., & Dang, A. S. (2020). Dissecting the role of micro-RNAs as a diagnostic marker for polycystic ovary syndrome: a systematic review and meta-analysis. Fertility and sterility, 113(3), 661–669.e2. https://doi.org/10.1016/j.fertnstert.2019.11.001 [Google Scholar] [Crossref]
- Duică, F., Condrat, C. E., Dănila, C. A., Boboc, A. E., Radu, M. R., Xiao, J., Li, X., Creţoiu, S. M., Suciu, N., Creţoiu, D., & Predescu, D. V. (2020). MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Frontiers in oncology, 10, 591181. https://doi.org/10.3389/fonc.2020.591181 [Google Scholar] [Crossref]
- Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524. https://doi.org/10.1038/nrm3838 [Google Scholar] [Crossref]
- Hi̇ti̇t, M , Kurar, E , Güzeloğlu, A . (2015). MikroRNA Biyogenezi . Atatürk Üniversitesi Veteriner Bilimleri Dergisi , 10 (3) , . DOI: 10.17094/avbd.35776 [Google Scholar]
- Ghahhari, N. M., & Babashah, S. (2015). Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. European journal of cancer (Oxford, England : 1990), 51(12), 1638–1649. https://doi.org/10.1016/j.ejca.2015.04.021 [Google Scholar] [Crossref]
- Ghafouri-Fard S, Shirvani-Farsani Z, Taheri M. The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res. 2020 Jun 20;5(3):88-98. doi: 10.1016/j.ncrna.2020.06.001. PMID: 32637757; PMCID: PMC7327754. [Google Scholar] [Crossref]
- Giorgi Silveira, R., Perelló Ferrúa, C., do Amaral, C. C., Fernandez Garcia, T., de Souza, K. B., & Nedel, F. (2020). MicroRNAs expressed in neuronal differentiation and their associated pathways: Systematic review and bioinformatics analysis. Brain Research Bulletin, 157, 140–148. https://doi.org/10.1016/j.brainresbull.2020.01.009 [Google Scholar] [Crossref]
- Greene, J., Baird, A. M., Brady, L., Lim, M., Gray, S. G., McDermott, R., & Finn, S. P. (2017). Circular RNAs: Biogenesis, Function and Role in Human Diseases. Frontiers in molecular biosciences, 4, 38. https://doi.org/10.3389/fmolb.2017.00038 [Google Scholar] [Crossref]
- Khan, A. Q., Ahmed, E. I., Elareer, N. R., Junejo, K., Steinhoff, M., & Uddin, S. (2019). Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells, 8(8), 840. https://doi.org/10.3390/cells8080840 [Google Scholar] [Crossref]
- Lewohl, J. M., Nunez, Y. O., Dodd, P. R., Tiwari, G. R., Harris, R. A., & Mayfield, R. D. (2011). Up-regulation of microRNAs in brain of human alcoholics. Alcoholism, clinical and experimental research, 35(11), 1928–1937. https://doi.org/10.1111/j.1530-0277.2011.01544.x [Google Scholar] [Crossref]
- Mazière P, Enright AJ. Prediction of microRNA targets. Drug Discov Today. 2007 Jun;12(11-12):452-8. doi: 10.1016/j.drudis.2007.04.002. Epub 2007 Apr 26. PMID: 17532529. [Google Scholar] [Crossref]
- Mirzaei, R., Mahdavi, F., Badrzadeh, F., Hosseini-Fard, S. R., Heidary, M., Jeda, A. S., Mohammadi, T., Roshani, M., Yousefimashouf, R., Keyvani, H., Darvishmotevalli, M., Sani, M. Z., & Karampoor, S. (2020). The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. International immunopharmacology, 107204. Advance online publication. https://doi.org/10.1016/j.intimp.2020.107204 [Google Scholar] [Crossref]
- Morozova, N., Zinovyev, A., Nonne, N., Pritchard, L. L., Gorban, A. N., & Harel-Bellan, A. (2012). Kinetic signatures of microRNA modes of action. RNA (New York, N.Y.), 18(9), 1635–1655. https://doi.org/10.1261/rna.032284.112 [Google Scholar] [Crossref]
- O'Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in endocrinology, 9, 402. https://doi.org/10.3389/fendo.2018.00402 [Google Scholar] [Crossref]
- Palmer, J. D., Soule, B. P., Simone, B. A., Zaorsky, N. G., Jin, L., & Simone, N. L. (2014). MicroRNA expression altered by diet: can food be medicinal?. Ageing research reviews, 17, 16–24. https://doi.org/10.1016/j.arr.2014.04.005 [Google Scholar] [Crossref]
- Podralska, M., Ciesielska, S., Kluiver, J., van den Berg, A., Dzikiewicz-Krawczyk, A., & Slezak-Prochazka, I. (2020). Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers, 12(6), 1662. https://doi.org/10.3390/cancers12061662 [Google Scholar] [Crossref]
- Ray, S. K. (2019). Chapter 17 - Modulation of Expression of miRNAs for Therapeutic Effects in Human Malignant Neuroblastoma. Editor(s): Swapan K. Ray, Neuroblastoma: Molecular Mechanisms and Therapeutic Interventions içinde (ss. 299-312). Academic Press. https://doi.org/10.1016/B978-0-12-812005-7.00017-5 [Google Scholar] [Crossref]
- Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?. Cell, 146(3), 353–358. https://doi.org/10.1016/j.cell.2011.07.014 [Google Scholar] [Crossref]
- Sekar, D., Johnson, J., Biruntha, M., Lakhmanan, G., Gurunathan, D., & Ross, K. (2020). Biological and Clinical Relevance of microRNAs in Mitochondrial Diseases/Dysfunctions. DNA and cell biology, 39(8), 1379–1384. https://doi.org/10.1089/dna.2019.5013 [Google Scholar] [Crossref]
- Shukla, V., Varghese, V. K., Kabekkodu, S. P., Mallya, S., & Satyamoorthy, K. (2017). A compilation of Web-based research tools for miRNA analysis. Briefings in Functional Genomics, 16(5), 249–273. https://doi.org/10.1093/bfgp/elw042 [Google Scholar] [Crossref]
- Shoeibi S. (2020). Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta physiologica (Oxford, England), 228(1), e13353. https://doi.org/10.1111/apha.13353 [Google Scholar] [Crossref]
- Ullah, M., Ng, N. N., Concepcion, W., & Thakor, A. S. (2020). Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing research reviews, 57, 100979. https://doi.org/10.1016/j.arr.2019.100979 [Google Scholar] [Crossref]
- Yang, J. S., & Lai, E. C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Molecular cell, 43(6), 892–903. https://doi.org/10.1016/j.molcel.2011.07.024 [Google Scholar] [Crossref]
- Ye, J., Xu, M., Tian, X., Cai, S., & Zeng, S. (2019). Research advances in the detection of miRNA. Journal of pharmaceutical analysis, 9(4), 217–226. https://doi.org/10.1016/j.jpha.2019.05.004 [Google Scholar] [Crossref]
- Zhu, B., Ju, S., Chu, H., Shen, X., Zhang, Y., Luo, X., & Cong, H. (2018). The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma. Oncology letters, 15(5), 6094–6106. https://doi.org/10.3892/ol.2018.8157 [Google Scholar] [Crossref]
|